Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 51: 109713, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965621

RESUMEN

Machilus thunbergii has a history of traditional applications including treating dyspepsia, apoplexy, headaches, abdominal pain, abdominal distension, and leg edema [1]. It is also employed for alleviating allergies, inflammation, pain relief, promoting blood circulation, addressing costal chondritis, and sinusitis [2]. Research into the chemical composition of M. thunbergii has revealed the presence of lignans, flavonoids, lactones, and essential oils [1,[3], [4], [5]. While some investigations have explored the inhibitory effects of extracts and lignan compounds from this species on NO production [6], [7], [8], there has been no research into the flavonoids isolated from this plant and their potential for inhibiting NO production, given our reachable referencing. The ethyl acetate (EtOAc) soluble fraction of M. thunbergii leaves was subjected to column chromatography (CC) using silica gel and Sephadex LH-20 for compound isolation. Nuclear magnetic resonance (NMR) data primarily facilitated the determination of isolated compound structures. Anti-inflammatory activity was evaluated against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW264.7 cells. Anti-inflammatory activity-guided fractionation led to the isolation of twelve secondary metabolites (1-12). The compounds were identified as quercetin (1), kaempferol (2), rhamnetin (3), quercitrin (4), hyperoside (5), reynoutrin (6), guaijaverin (7), afzelin (8), astragalin (9), rutin (10), kaempferol-3-O-rutinoside (11), and rhamnetin-3-O-rutinoside (12). Compounds 3, 5, 6, 9, 11, and 12 were isolated from M. thunbergii for the first time. Evaluation against LPS-induced NO production in macrophage RAW264.7 cells showed that 1-3 exhibited potent inhibitory activity with IC50 values of 15.45, 25.44, and 19.82 µM, respectively. Compounds 4-9 demonstrated IC50 values ranging from 42.15 to 67.42 µM, while 10-12 exhibited inactivity (IC50 > 100 µM).

2.
Chem Biodivers ; 20(11): e202301296, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37842907

RESUMEN

Vitex trifolia L. is a medicinal plant and widely distributed in the northern mountainous areas of Vietnam. Phytochemical study on the fruits of this plant led to the isolation of nine iridoid derivatives (1-9) including three undescribed compounds (1-3). Their structures were elucidated to be 3''-hydroxyscrophuloside A1 (1), 3''-hydroxycallicoside D (2), 2'-p-hydroxybenzoylaucubin (3), 6'-p-hydroxybenzoylmussaenosidic acid (4), nishindaside (5), agnuside (6), 10-O-vanilloylaucubin (7), 6'-O-p-hydroxybenzoyl-gardoside (8), and buddlejoside B (9) based on extensive analyses of HR-ESI-MS, 1D and 2D NMR spectra. Compounds 1, 2, 4, and 8 significantly posessed anti-barterial activity against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa strains with MIC values in range of 16-64 µg/mL. At concentration of 20 µM, compounds 1-9 did not show cytotoxic effects against human lung cancer cells (PC9).


Asunto(s)
Antiinfecciosos , Antineoplásicos , Vitex , Humanos , Iridoides/química , Vitex/química , Frutas/química , Antiinfecciosos/farmacología , Antiinfecciosos/análisis , Extractos Vegetales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...